La distribución muestral de proporciones está estrechamente relacionada con la distribución binomial; una distribución binomial es una distribución del total de éxitos en las muestras, mientras que una distribución de proporciones es la distribución de un promedio (media) de los éxitos. Como consecuencia de esta relación, las afirmaciones probabilísticas referentes a la proporción muestral pueden evaluarse usando la aproximación normal a la binomial, siempre que: np ≥ 5 y n(1- p) ≥ 5 Una distribución binomial es, por ejemplo, si echamos una moneda al aire y observamos el lado que cae. Está claro que sólo hay dos posibilidades. Ahora bien, la probabilidad de que caiga la moneda de cualquier lado es la misma siempre que ésta no esté cargada. C omo cada caso tiene igual probabilidad de ocurrir, y siendo la s uma de probabilidades siempre igual a 1, entonces la probabilidad de que caiga la moneda de algún lad o es 0.5. Si realizamos el experimento n veces y queremos saber la probabilida d de que salga águila o sol x veces, entonces usamos una distribución binomial.
jueves, 13 de septiembre de 2018
DISTRIBUCCION MUESTRAL DE PROPORCIONES
Existen ocasiones en las cuales no estamos interesados en la media de la
muestra, sino que queremos investigar la proporción de artículos
defectuosos o la proporción de personas con teléfono, etc en la
muestra. La distribución muestral de proporciones es la adecuada para
dar respuesta a estas situaci
ones.
Esta distribución se genera de igual manera que la distribución muestral
de medias, a excepción de que al extraer las muestras de la población
s
e
calcula el estadístico proporción
(p=x/n en donde “
x”
es el número de
éxitos u observaciones de interés y “
n”
el tamaño de la muestra) en
lugar de la media de cada muestra que era lo que calculamos antes.
La distribución muestral de proporciones está estrechamente relacionada con la distribución binomial; una distribución binomial es una distribución del total de éxitos en las muestras, mientras que una distribución de proporciones es la distribución de un promedio (media) de los éxitos. Como consecuencia de esta relación, las afirmaciones probabilísticas referentes a la proporción muestral pueden evaluarse usando la aproximación normal a la binomial, siempre que: np ≥ 5 y n(1- p) ≥ 5 Una distribución binomial es, por ejemplo, si echamos una moneda al aire y observamos el lado que cae. Está claro que sólo hay dos posibilidades. Ahora bien, la probabilidad de que caiga la moneda de cualquier lado es la misma siempre que ésta no esté cargada. C omo cada caso tiene igual probabilidad de ocurrir, y siendo la s uma de probabilidades siempre igual a 1, entonces la probabilidad de que caiga la moneda de algún lad o es 0.5. Si realizamos el experimento n veces y queremos saber la probabilida d de que salga águila o sol x veces, entonces usamos una distribución binomial.
La distribución muestral de proporciones está estrechamente relacionada con la distribución binomial; una distribución binomial es una distribución del total de éxitos en las muestras, mientras que una distribución de proporciones es la distribución de un promedio (media) de los éxitos. Como consecuencia de esta relación, las afirmaciones probabilísticas referentes a la proporción muestral pueden evaluarse usando la aproximación normal a la binomial, siempre que: np ≥ 5 y n(1- p) ≥ 5 Una distribución binomial es, por ejemplo, si echamos una moneda al aire y observamos el lado que cae. Está claro que sólo hay dos posibilidades. Ahora bien, la probabilidad de que caiga la moneda de cualquier lado es la misma siempre que ésta no esté cargada. C omo cada caso tiene igual probabilidad de ocurrir, y siendo la s uma de probabilidades siempre igual a 1, entonces la probabilidad de que caiga la moneda de algún lad o es 0.5. Si realizamos el experimento n veces y queremos saber la probabilida d de que salga águila o sol x veces, entonces usamos una distribución binomial.
miércoles, 12 de septiembre de 2018
jueves, 6 de septiembre de 2018
Distribución Muestral de Diferencia de Medias
Suponga que se tienen dos poblaciones distintas, la primera con media
1 y desviación estándar
1, y la segunda con media
2 y desviación estándar
2. Más aún, se elige una muestra aleatoria de tamaño n1 de la primera población y una muestra independiente aleatoria de tamaño n2 de la segunda población; se calcula la media muestral para cada muestra y la diferencia entre dichas medias. La colección de todas esas diferencias se llama distribución muestral de las diferencias entre medias o la distribución muestral del estadístico 
La distribución es aproximadamente normal para n1
30 y n2
30. Si las poblaciones son normales, entonces la distribución muestral de medias es normal sin importar los tamaños de las muestras.
En ejercicios anteriores se había demostrado que
La fórmula que se utilizará para el calculo de probabilidad del estadístico de diferencia de medias es:
En un estudio para comparar los pesos promedio de niños y niñas de sexto grado en una escuela primaria se usará una muestra aleatoria de 20 niños y otra de 25 niñas. Se sabe que tanto para niños como para niñas los pesos siguen una distribución normal. El promedio de los pesos de todos los niños de sexto grado de esa escuela es de 100 libras y su desviación estándar es de 14.142, mientras que el promedio de los pesos de todas las niñas del sexto grado de esa escuela es de 85 libras y su desviación estándar es de 12.247 libras. Si
Solución:
Datos:
n2 = 25 niñas
Por lo tanto, la probabilidad de que el promedio de los pesos de la muestra de niños sea al menos 20 libras más grande que el de la muestra de las niñas es 0.1056.
martes, 4 de septiembre de 2018
TEOREMA DE LIMITE CENTRQL (TLC)
El teorema del límite central es un teorema fundamental de probabilidad y estadística. El teorema describe la distribución de la media de una muestra aleatoria proveniente de una población con varianza finita. Cuando el tamaño de la muestra es lo suficientemente grande, la distribución de las medias sigue aproximadamente una distribución normal. El teorema se aplica independientemente de la forma de la distribución de la población. Muchos procedimientos estadísticos comunes requieren que los datos sean aproximadamente normales. El teorema de límite central le permite aplicar estos procedimientos útiles a poblaciones que son considerablemente no normales. El tamaño que debe tener la muestra depende de la forma de la distribución original. Si la distribución de la población es simétrica, un tamaño de muestra de 5 podría producir una aproximación adecuada. Si la distribución de la población es considerablemente asimétrica, es necesario un tamaño de muestra más grande. Por ejemplo, la distribución de la media puede ser aproximadamente normal si el tamaño de la muestra es mayor que 50. Las siguientes gráficas muestran ejemplos de cómo la distribución afecta el tamaño de la muestra que se necesita.
Muestras de una población uniforme
Una población que sigue una distribución uniforme es simétrica, pero marcadamente no normal, como lo demuestra el primer histograma. Sin embargo, la distribución de las medias de 1000 muestras de tamaño 5 de esta población es aproximadamente normal debido al teorema del límite central, como lo demuestra el segundo histograma. Este histograma de las medias de las muestras incluye una curva normal superpuesta para ilustrar esta normalidad.
Distribución exponencial
Medias de las muestras
Muestras de una población exponencial
Una población que sigue una distribución exponencial es asimétrica y no normal, como lo demuestra el primer histograma. Sin embargo, la distribución de las medias de 1000 muestras de tamaño 50 de esta población es aproximadamente normal debido al teorema del límite central, como lo demuestra el segundo histograma. Este histograma de las medias de las muestras incluye una curva normal superpuesta para ilustrar esta normalidad.
Suscribirse a:
Entradas (Atom)